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Artificial Neural Network Paradigms

1. Feedforward Neural Network (FNN)

. Static mapping
. Can not represent a dynamic response w/o tapped delays

2. Fully Connected Recurrent Neural Network (FRNN)
. Can naturally represent dynamic systems
. Difficult to train and to converge in a short time

- 3. Diagonal Recurrent Neural Network (DRNN)
. Fewer weights and shorter training time
. Can be implemented easily for real-time control




~ PENNSTATE
i

1. Feedforward Neural Network (FFNN)

® Linear neuron

) e - @WJD

sigmoid neuron

[Cd Delay

* Static mapping

* Combine with tapped delays to perform

dynamic mapping
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w 2. Fully Connected Recurrent Neural Network (FRNN)

* Dynamic mapping
* Convergence problem

* Stability problem
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w 3. Diagonal Recurrent Neural Network (DRNN)

* Dynamic mapping
* Requires fewer weights

* Convergence is enhanced
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A. Dynamic representation of DRNN

The mathematical model for the DRNN in Figure 1 is shown
below:

O(k) = Y WOX;(k), X;(k)= £(5;(k)), (1)

J

Si(k) = WP X;(k-1)+ ) WiL(k), (2)

where I;(k) is the it* input to the DRNN, S;(k) is the sum of
inputs to the j** recurrent neuron, X;(k) is the output of the j**
recurrent neuron and O(k) is the output of the DRNN. Here f(:)
is the usual sigmoid function representing nonlinear threshold
function, and W1, W2, and W© are input, recurrent, and output
weight vectors, respectively, in ®*, ®"¢, and ®"-, which are
Euclidean spaces with appropriate dimensions.
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Figure 3.2 Block diagram of DRNN based control system.
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Let y,.(k) and y(k) be the desired and actual responses‘ of the
plant, respectively, then an error function for DRNC can be

defined as

B = 5(u (k) - y(k))". (3

The error function (3) is also modified for the DRNI by replac-
ing y.(k) and y(k) with y(k) and y..(k), respectively, where y,, (k)
is the output of the DRNI, i.e.,

B = 3(0(k) - ym (), (@

where ym(k) = O(k) in (1).
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The gradient of error in (3) with respect to an arbitrary weight
vector W € R" is represented by

o5, _
ow

ay(k) 00 (k)

—ec(k) 3t = —ee(Wyu(k) o) (5

where e.(k) = y.(k) — y(k) is the error between the desired and
output responses of the plant, and the factor y, (k) = a—yi(',:—) repre-
sents the sensitivity of the plant with respect to its input. Since
the plant is normally unknown, the sensitivity needs to be es-

timated for the DRNC. However, in the case of the DRNI, the
gradient of error in (4) simply becomes

00 (k)
ow

OB, Oym (k) _

aw — emB) g = —em(k)
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w The output gradient 22%) is common in (5) and (6), and needs
to be computed for both DRNC and DRNI. The gradient with

respect to output, recurrent, and input weights, respectively,
are computed using the following equations

90 (k)

A0 = itk (Ta)
00 (k

S =R (1t
Tt = WP Qb (70

‘where Pj(k) = 25 and Q;; = 2%4(P | and satisfy
J

ij

Pi(k) = f’(Sj)(Xj(k 1)+ WPk - 1)), (8a)

Qis(k) = f’(Sj)(L-(k) FWPQis(k - 1)), (8b)
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B. Dynamic backpropagation for DRNI

From (6), the negative gradient of the error with respect to a
weight vector in R is

9B, 80 (k)
S = em(k) S5, (9

where the output gradient is given by (7) and (8), and W rep-
resents WO, WP, or W! in R, R4, or ®™, respectively.

The weights can now be adjusted following any gradient method
such as the steepest descent method, i.e., the update rule of the

weights becomes

W(n+1) = W(n) +n(-2om) + AW (n), (10)

where 7 is a learning rate, a is a momentum factor, and AW (n)
represents the change in weight in the =" iteration.
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w C. Dynamic backpropagation for DRNC
In the case of DRNC, from (5), the negative gradient of the

error with respect to a weight vector in ®" is

o = Bt 2. 1)

Since the plant is normally unknown, the sensitivity term y,(k)
is unknown. This unknown value can be identified by using the
DRNI. When the DRNI is trained, the dynamic behavior of the
DRNI is close to the unknown plant, i.e., y(k) ~ yn(k), Where
ym(k) is the output of the DRNI.

Therefore, the sensitivity was approximated in [2] and shown

to be 50k Bu (k
i) = g = SWRrs e a2

where the variables and weights are those found in DRNI.
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w Adaptive Learning Rate for Training DRNN

A discrete-type Lyapunov function can be given by
V(k) = 5e(k), (13)

where e(k) represents the error in the learning process.

Thus, the change of the Lyapunov function due to the training
process is obtained by

AV(k)=V(k+1)-V(k)= -;- [ez(k +1) - ez(k)] : (14)

The error difference due to the learning can be represented by

Oe(k)
ow

T
e(k+1) = (k) + Ack) = (i) + | 52| AW (15)

where AW represents a change in an arbitrary weight vector in
R™.
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A. Convergence of DRNI

From the update rule of (6) and (10) with a = 0, and since

em(k) = y(k) — ym (k) thus

Oem(k) _ Oym/(k)

oW, oW ;(k)’

dem(k)
ow;

nrem(k) 22)

AWr = —nrem (k) oW,

(16)

Theorem 1: Let 7, the learning rate for the weights of DRNI,
satisfy n; = m /9% mazy With 0 < 7y < 2, and g7, defined as
9I,maz = mazyi|gr(k)|, where gr(k) = %V%l, and || - || is the usual
Euclidean norm in ®". Then the convergence is guaranteed if

nr 1s chosen as

2
0<nr < —

I,mazx

(17)
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B. Convergence of DRNC
From the update rule of (10) and (11) with « = 0, and following
the same procedure as in Section A,

Ode.(k 00 (k
AW, = —neec(k) Spor) = e (k)yu () 20,

Theorem 2: Let 5., the learning rate for the weights of DRNC,
satisfy n. = 12/92 masSPass With 0 < 72 < 2, gcoma. defined as
ge.maz = mazyi||g.(k)|, where g.(k) = %%%l, and Sy, = hlwgm“;W’I""‘“,
.where h; is the number of neurons in the hidden layer. Then

the convergence is guaranteed if 7. is chosen as

2

2 2 :
Smazgc,maz

(18)

0<n <




SIMULATION RESULTS

Example 1: A BIBO nonlinear plant

Reference Model:
yr(k + 1) = 0.6y,.(k) + (k)

. [ 27k . [ 27k
r(k) = sm(—z—g—) + szn(—l—o—)

y(k+1) = ﬁyj(%(k—) +u’ (k)

Plant Model:

In this example, 2, = {r(k),u(k —1),y(k - 1)} and Z; =
{u(k),y(k — 1)}, thus n, =3 and »;, = 2. Also, Ny = 14 and
Wp =67. 9. = 0.1 and n; = 0. 1.
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The on-line adapting ability of DRNN based control
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Simulation Results : Example 2- MRC

Reference model:
y,(k + 1) = 0.6y, (k) + (k)

Desired reference:

. 2wk ., 27k
r(k) = 0.5szn(m) + 0.53zn(100'0)

Plant :

y(k +1) = 0.2y%(k) + 0.2y(k — 1) + 0.45in[0.5(y(k)+

y(k — 1))]-cos[0.5(y(k) + y(k — 1))] + 1.2u(k)




Simulation Results: Example 2

fyr(k)

Fig. 4 (a) Outputs of reference model and plant




Simulation Results: Example 2
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Fig. 4 (b) Control signal generated from DRNC
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Example 3: Flight Control

Reference model:

4.0
H(s)= Z 589, 7 40
Plant:
1.0
H(s)= o505 10
training sets (g, (0),z,(0)) = (0.0,0.0), (0.1,0.3), and (0.5,0.75)

testing set (331(0),332(0)) = (0.8, 1.0)

The step input is applied to the reference model, and r(t)=1

Nr = 16 and Wr = 84. 1. and 57, 20 , and both biases, b, and by, 1.0.
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Simulation Results: Example 1
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Fig. 3 (b) Outputs of reference model, plant, and DRNI
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Ezample 2: A Controlled Van der Pol equation

The objective of this example is to investigate the
ability of DRNN based control system in control-
ling a nonlinear plant with a Van der Pol dynam-
ics.

Plant model:
() — (1 - 22()(t) + 2(t) = u(t)
z1(t) = z2(2)
£a(t) = —21(t) + p(1 — 23(0))2(t) + u(?)

and

y(t) = z1(t) + za(2).
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Conclusion

1. A new neural network paradigm of DRNN is developed as a
minimal realization of the fully recurrent neural network.

2. The proposed paradigm has the desired features of simplicity and
recurrence. This makes the convergence and stability possible.

3. Adaptive learning algorithm is developed for on-line approach.
4. Convergence theorems are developed which not only guarantees

the error to converge to an arbitrary small value, but also
guarantees the closed-loop stability of the BIBO stable system.




